Approximate Bayesian Computation
ثبت نشده
چکیده
Just when you thought it was safe to go back into the water, I’m going to complicate things even further. The Nielsen-Wakely-Hey [5, 3, 4] approach is very flexible and very powerful, but even it doesn’t cover all possible scenarios. It allows for non-equilibrium scenarios in which the populations from which we sampled diverged from one another at different times, but suppose that we think our populations have dramatically increased in size over time (as in humans) or dramatically changed their distribution (as with an invasive species). Is there a way to use genetic data to gain some insight into those processes? Would I be asking that question if the answer were “No”?
منابع مشابه
Fundamentals and Recent Developments in Approximate Bayesian Computation
Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) ...
متن کاملApproximate Bayesian Computation: a nonparametric perspective
Approximate Bayesian Computation is a family of likelihood-free inference techniques that are tailored to models defined in terms of a stochastic generating mechanism. In a nutshell, Approximate Bayesian Computation proceeds by computing summary statistics from the data and giving more weight to the values of the parameters for which the simulated summary statistics resemble the observed ones. ...
متن کاملAdaptive approximate Bayesian computation
Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.’s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine im...
متن کاملAdaptivity for approximate Bayesian computation algorithms: a population Monte Carlo approach
Sequential techniques can be added to the approximate Bayesian computation (ABC) algorithm to enhance its efficiency. Sisson et al. (2007) introduced the partial rejection control version of this algorithm to improve upon existing Markov chain versions of the algorithm. While Sisson et al.’s (2007) method is based upon the theoretical developments of Del Moral et al. (2006), the application to ...
متن کاملCan Machines Learn Respiratory Virus Epidemiology?: A Comparative Study of Likelihood-Free Methods for the Estimation of Epidemiological Dynamics
To estimate and predict the transmission dynamics of respiratory viruses, the estimation of the basic reproduction number, R0, is essential. Recently, approximate Bayesian computation methods have been used as likelihood free methods to estimate epidemiological model parameters, particularly R0. In this paper, we explore various machine learning approaches, the multi-layer perceptron, convoluti...
متن کامل